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Abstract
The solution of the Schrödinger equation for a position-dependent mass
quantum system is studied in two ways. First, the interaction is found which
must be applied to a mass m(x) in order to supply it with a particular spectrum
of energies. Second, given a specific potential V (x) acting on the mass m(x),
the related spectrum is found. The method of solution is applied to a wide class
of position-dependent mass oscillators and the corresponding coherent states
are constructed. The analytical expressions of such position-dependent mass
coherent states preserve the functional structure of the Glauber states.

PACS numbers: 11.30.Pb, 03.65.Ge, 03.65.Fd, 02.30.Gp

1. Introduction

The problem of calculating the energies of a quantum system endowed with position-dependent
mass m(x) and subjected to a given interaction represents an interface between theoretical and
applied physics. Its antecedent can be identified with the concept of effective mass, introduced
in the 1940s to discuss the motion of electrons or holes in semiconductors [1]. Successfully
applied in describing the formation of shallow energy levels due to impurities in crystals, the
effective mass theory was strongly developed in the 1950s [2]. Further insights were given
in the calculation of superlattice band structures for which the band edges and the masses are
position dependent. In such a context, it was stressed that the correct effective Hamiltonian
consists of the kinetic term 1

4

{
P 2, 1

m(x)

}
instead of the conventional expression P 2

2m
[3]. That

is, the Hermiticity of the Hamiltonian is a part of the problem if the mass is not a constant.
The subject has embraced potentials other than the periodic ones over the years. Indeed,

the energy bands and periodic-like interactions appearing quite naturally in semiconductor
physics are substituted with point spectra and properly defined potentials in mathematical
physics [4–13, 21–28]. This new perspective has inspired intense activity in the search for
new exactly solvable potentials in quantum mechanics. Of particular interest, Susy-QM
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(factorization or intertwining method) [14–17] and group theory [18, 19] (see also [20])
represent the most fruitful approaches to the matter [21–28]. However, the literature focuses
mainly on one of the two sides of the problem. Namely, in order to get a particular spectrum,
an appropriate mass function m(x) and potential V (x) are usually looked for. A deeper insight
is necessary if one is interested in a particular mass m(x) subject to a previously defined
interaction rather than looking for the recovery of a specific spectrum.

In this work, we analyze the two sides of the position-dependent mass problem by
following the transformation scheme of the Schrödinger equation reported in [20]. In a first
step, the equation involving m(x) is mapped to the equation of a constant mass m0. After
obtaining some general results, we study the eigenvalue problem connected with diverse
position-dependent mass oscillators. In general, we distinguish between two fundamental
kinds of oscillators. The first one is characterized by exhibiting the conventional set of
equidistant energies h̄ω0(n + 1/2), no matter what the explicit form of m(x) or V (x) is. The
oscillators of the second kind, on the other hand, are endowed with position-dependent mass
m(x) and subjected to the conventional oscillator interaction Vosc(x) = m0ω

2
0x

2
/

2. The
spectra of these last oscillators depend on the explicit form of the mass function. In this way,
we are able to compare the behavior of a quantum system of mass m(x) with that of a particle
of mass m0 when both of them are acted on by the same oscillator-like potential. One of our
motivations to analyze such oscillators is due to the fact that, as far as we know, there is a lack
of results including the coherent states for position-dependent mass systems.

Originally derived for electromagnetic fields [29], the features of the standard coherent
states (Glauber states) are a consequence of the oscillator dynamical algebra [30]. They are
usually constructed as eigenstates of the annihilation operator but are shown to minimize
the uncertainty relation between position and momentum as well. A third property is that
the Glauber states are displaced versions of the ground wavefunction. For other systems,
generalized coherent states (CS) can be constructed through algebraic techniques (see, e.g.
[30, 31]). In general, the CS do not show all the three basic properties of the Glauber states.
They have been recently studied in connection with nonlinear Susy algebras [32, 33] (see, also
the reviews [34, 35]), classical motion models for the Pöschl–Teller potential [36], anharmonic
vibrations in diatomic molecules [37], Landau levels [38] and the Penning trap [39]. In the
present work, we introduce some families of position-dependent mass oscillator coherent
states.

The paper is organized as follows. In section 2, the Schrödinger equation of a position-
dependent mass system is connected with the equation of a constant mass m0. The solutions
are interrelated by a mapping for which the Hamiltonians are isospectral. The main difficulty
is that the Hamiltonian of the mass m0 includes an effective potential which, in general, makes
the related equation as complicated to solve as the initial one. Here, the problem will be
faced by either selecting the appropriate mass function m(x) or fixing the order in which
m is entangled with P in the Hamiltonian. In section 3, the previous general results are
particularized to the harmonic oscillator potential. As a first result, it is shown that potentials
behaving as a confining odd-root-law, ln2, or sinh2 give rise to the quantum oscillator energies.
The singular oscillator V = x2 + αx−2 is analyzed as a special case. On the other hand, it is
also shown that the action of an oscillator potential on m(x) involves the energies of a constant
mass m0 subject to either a confining even-power-law or the sinh2-like potentials. To deal
with these last potentials, numerical approximation of the solutions will be unavoidable.

In section 4, a position-dependent mass Hamiltonian is shown to be factorized by a couple
of two mutually adjoint operators, the commutator of which depends on the explicit form of
m(x). The initial Hamiltonian is then intertwined with a new one in such a way that they
are isospectral. Factorization operators can be properly selected to work as ladders when
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acting on the eigenfunctions derived in section 3. The related coherent states are constructed
as eigenfunctions of the annihilation operator. These position-dependent mass CS are shown
to have the same analytical form as the Glauber states. Moreover, they are also displaced
versions of the ground state and minimize the uncertainty relation between P and Y, this last
being the position operator in the appropriate representation. Finally, in the very last section
of the paper some concluding remarks are given.

2. The eigenvalue equation

Let us consider the one-dimensional Hamiltonian

Ha = 1
2maPm2bPma + V ≡ Ka + V, 2a + 2b = −1, (1)

where the mass m > 0 and the potential V are functions of the position, Ka is the kinetic term
of Ha and P fulfills [X,P ] = ih̄, with X being the position operator. We shall use D(a) to
represent the domain of definition of Ha , i.e. D(a) ≡ Dom(Ha).

In the position representation X = x and P = −ih̄ d
dx

, so we have

[f (x), P ] = i h̄f ′(x), ′ ≡ d

dx
. (2)

This last commutator allows us to express the Hamiltonian (1) as follows:

Ha = 1

2m
P 2 +

ih̄

2m

(
m′

m

)
P − h̄2

2m

( a

m2

)
[mm′′ − (2 + a)(m′)2] + V

= α1
d2

dx2
+ α2

d

dx
+ α3, (3)

with

α1 = − h̄2

2m
, α2 = −α1

(
m′

m

)
= α′

1,

α3 = α1

( a

m2

)
[mm′′ − (2 + a)(m′)2] + V.

(4)

In order to solve the eigenvalue equation

Haψ(x) = Eψ(x), (5)

we first rewrite the functions ψ to read

ψ(x) = eg(x)ϕ(x), (6)

with g and ϕ being two functions to be determined such that∫
D(a)

|ψ(x)|2 dx =
∫
D(a)

|eg(x)ϕ(x)|2 dx < +∞. (7)

Hence, from (5) one gets

α1ϕ
′′ + (2α1g

′ + α2)ϕ
′ + {α1[g′′ + (g′)2] + α2g

′ + α3 − E}ϕ = 0. (8)

Now, we introduce a change of the independent variable x, ruled by a bijection s as follows:

x �→ y = s(x), y �→ x = s−1(y). (9)

The Jacobian of the transformation is given by J = s ′(x). If J �= 0 at a point x, the inverse
function theorem indicates that the map s is 1–1 and onto in some neighborhood of x (see, e.g.
[40 pp 91]). In this way, to construct a well-defined bijection s we first ask for the involved
Jacobian s ′ to be free of zeros. On the other hand, let f be a function of x. Then we have

f (x) = f (s−1(y)) = [f ◦ s−1](y) ≡ f∗(y). (10)

3
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Thus, f∗ is the representation of the function f in the y-space. In a similar manner we find
that f is the representation of f∗ in the x-space: f = [f∗ ◦ s]. Hereafter, and whenever there
will be no confusion, we drop the subindex ‘*’ from the functions in the y-representation. The
straightforward calculation departing from equation (8) leads to

α1(y
′)2ϕ̈ + [α1y

′′ + (2α1g
′ + α2)y

′]ϕ̇ + {α1[g′′ + (g′)2] + α2g
′ + α3 − E}ϕ = 0, (11)

where ḟ ≡ df/dy. This last equation acquires a simple form if the coefficients of ϕ̈ and ϕ̇ are
respectively a constant c2

0 (expressed in appropriate units) and zero. Thereby one has a system
of equations

α1(y
′)2 = c2

0, α1y
′′ + (2α1g

′ + α2)y
′ = 0, (12)

the solution of which defines the forms of g and y in terms of the mass position dependence:

g(x) = ln

[
m(x)

m0

]1/4

, y =
∫

e2g(x) dx + y0. (13)

Here, m0 and y0 are integration constants (we shall take, for simplicity, y0 = 0) and the
constant c0, introduced in (12), has been written as c0 = ih̄/

√
2m0. These last results in (11)

reduce the initial eigenvalue equation (5) to the following one:

H
(a)
eff ϕ(y) :=

[
−
(

h̄2

2m0

)
d2

dy2
+ V

(a)
eff (y)

]
ϕ(y) = Eϕ(y), (14)

where the function

V
(a)

eff := V −
(

h̄2

2m3

)[(
1

4
+ a

)
mm′′ −

{
7

16
+ a(2 + a)

}
(m′)2

]
(15)

plays the role of an ‘effective potential’ and depends on the explicit expressions for the mass
m and the initial potential V , both of them in the y-representation. In particular, if the mass
function m is a constant then we have V

(a)
eff = V . In general, m(x) could lead to a very complex

function V
(a)

eff (y) for which the new equation (14) is as complicated to solve as the initial one
(5). Hence, at this stage, the main simplification is the avoiding of undesirable mass factors
in the derivative term so that techniques to solve the conventional Schrödinger equation can
be applied.

Given a solution ϕ∗ of (14), according to (6), (9) and (13), the function ψ is

ψ(x) = J 1/2[ϕ∗ ◦ s](x), J =
[
m(x)

m0

]1/2

. (16)

Therefore, we have∫
D(a)

|ψ(x)|2 dx =
∫
D(a)

J |ϕ∗(s(x))|2 dx ←→
∫
D(a)

eff

|ϕ∗(y)|2 dy, (17)

with D(a)
eff ≡ Dom

(
H

(a)
eff

)
. That is, by getting the square-integrable eigenfunctions of H

(a)
eff

one is able to obtain the square-integrable eigenfunctions of Ha and vice versa. Moreover,
from (5) and (14) we note that ϕ∗ and ψ share the same eigenvalue E. Thus, Ha and H

(a)
eff are

isospectral operators; we write Sp(Ha) = Sp
(
H

(a)
eff

)
.

Note that equations (15) and (16) are consistent with the results reported in
[5, 23, 25]. With regard to our approach, there are still a couple of special cases leading
to further simplifications. Namely, one can get V

(a)
eff (y) = V (y) by selecting the appropriate

function m(x) or by properly fixing the value of a, as we are going to show.

4
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2.1. Mass-dependent null terms (MDNT)

Let us look for a mass function m such that V
(a)

eff − V = 0 in equation (15). Thus, we should
solve the nonlinear, second-order differential equation:

c1mm′′ + c2(m
′)2 = 0, 2c1 = 1

16 − a2 − c2 = 1
2 + 2a. (18)

A brief examination yields

m(x; a) = m0(x0 + λx)−4/(3+4a), a �= −3/4 (19)

as the simplest solution with x0 and λ being constants to be fixed. We have to distinguish
between two general cases, as follows:

(I) If a < −3/4, then m(x; a) has a zero at x = t0 ≡ −x0/λ.

(II) If a > −3/4, then m(x; a) is singular at x = t0.

The first case will be omitted to avoid ill-defined operators Ha and inappropriate mappings s
as well. Indeed, if a < −3/4, the kinetic term Ka in equation (1) diverges and the Jacobian
J in (16) is zero at x = t0. On the other hand, for a > −3/4 the integrability of

√
m(x; a) in

equation (13) depends on the value of a. In particular, if a = a0 ≡ −1/4 then the mapping
x �→ y(0) is ruled by the function

y(0) = s(0)(x) = ln(x0 + λx)

λ
, x � t0, (20)

with

m(0)(x) ≡ m(x; a0) = m0

(x0 + λx)2
. (21)

This last expression of m(x) is connected with the revival wave packets in a position-dependent
mass infinite well [10]. Here, the Jacobian reads as J(0) = 1/(x0 + λx), so that the bijection
s(0) is well defined for all x � t0 and arbitrary real values of x0 and λ. Then, in general
D(a0) ⊆ [t0, +∞) and D(a0)

eff ⊆ R. The explicit form of the domains of definition D(a0) and
D(a0)

eff depends on V while the inverse function reads as

x = s−1
(0) (y) = eλy(0) − x0

λ
. (22)

On the other hand, if a �= a0 the new variable is given by

y = s(x; a) = (x0 + λx)η

λη
, η =

(
1 + 4a

3 + 4a

)
. (23)

The appropriate mapping s(x; a) is fixed by looking for the values of a such that either
η = 2n + 1 or η−1 = 2n + 1, n = 1, 2, . . .. In the former case we arrive at the discrete set
integrated by the points − 3n+1

4n
= −1,− 7

8 ,− 5
6 , . . . < − 3

4 . However, each one of these possible
values of a belongs to case (I) discussed above and must be omitted. Now, if η−1 = 2n + 1 we
obtain the points 1−n

4n
= 0,− 1

8 ,− 1
6 , . . . > − 1

4 , which belong to case (II) we are interested in.
Henceforth, the mapping x �→ y(n) is established from equation (23) as follows:

y(n) = s(x; an) ≡ s(n)(x) =
(

2n + 1

λ

)
(x0 + λx)1/(2n+1), an �= a0, (24)

while the corresponding inverse transformation is ruled by

x = s−1
(n) (y(n)) = 1

λ

[(
λy(n)

2n + 1

)2n+1

− x0

]
, an �= a0. (25)

5
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Table 1. Special mass functions m(x) and orderings of the kinetic term Ka(x) leading to the
Hamiltonians Ha and H

(a)
eff , with V

(a)
eff (y) = V (y) and Sp(Ha) = Sp(H

(a)
eff ). In all cases, the

definite domain is fixed by V .

a0 = − 1
4 Ha0 = 1

2 m
−1/4
(0) Pm

−1/2
(0) Pm

−1/4
(0) + V (x) H (a0) = −

(
h̄2

2m0

)
d2

dy2
(0)

+ V (y(0))

m(0)(x) = m0
(x0+λx)2

λy(0) = ln(x0 + λx) D(a0) ⊆ [t0, +∞) D(a0)

eff ⊆ R

a1 = 0 Ha1 = 1
2 Pm−1

(1)P + V (x) H (a1) = −
(

h̄2

2m0

)
d2

dy2
(1)

+ V (y(1))

m(1)(x) = m0
(x0+λx)4/3

λy(1) = 3(x0 + λx)1/3 D(a1) ⊆ R D(a1)

eff ⊆ R

an = (1−n)

4n
, n ∈ N Han

= 1
2 m

an

(n)Pm
−1−2an

(n) Pm
an

(n) + V (x) H (an) = −
(

h̄2

2m0

)
d2

dy2
(n)

+ V (y(n))

m(n)(x) (see,
equation (26))

y(n) (see, D(an) ⊆ R D(an)

eff ⊆ R

equation (24))

a = − 1
4 H−1/4 = 1

2 m−1/4Pm−1/2Pm−1/4 + V (x) H = −
(

h̄2

2m0

)
d2

dy2 + V (y)

m(x) > 0

y = ∫
(m/m0)

1/2dx D(−1/4) ⊆ R D(−1/4)

eff ⊆ R

The expression for the mass function (19) in terms of an �= a0 reduces to

m(n)(x) ≡ m(x; an) = m0

(x0 + λx)4n/(2n+1)
, n ∈ N. (26)

Note that J(n) = (x0 + λx)−2n/(2n+1). Hence J(n) �= 0 for all x ∈ R and arbitrary real values of
x0 and λ. As a consequence D(an) ⊆ R and D(an)

eff ⊆ R. To embrace an>0 and a0 into the same
notation, let us introduce the set

A =
{
a0 = −1/4, an = 1 − n

4n

}
, n ∈ N. (27)

Then, if a ∈ A the position-dependent mass operator Han
is mapped to a conventional

Hamiltonian H(an) in the y(n)-representation and vice versa (see table 1):

Han
↔ H

(an)
eff ≡ H(an) = −

(
h̄2

2m0

)
d2

dy2
(n)

+ V (y(n)), (28)

with Sp(Han
) = Sp(H (an)). We shall take full advantage of this last property in the following

sections.

2.2. Mass-independent null terms (MINT)

A simple inspection of equation (15) shows that V
(−1/4)

eff (y) = V (y), no matter what the
explicit form of the mass function m(x) is—assuming the latter is well defined. That is, by
fixing a = −1/4 we get

H−1/4 ↔ H
(−1/4)

eff ≡ H = −
(

h̄2

2m0

)
d2

dy2
+ V (y). (29)

In particular, if m = m(0) then H in (29) is the same as H(a0) with D(−1/4) ≡ Dom(H−1/4) =
D(a0) and Dom(H) = D(a0)

eff . A similar situation occurs if m = m(n) (see table 1).

6
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Besides the mass functions derived in the previous section, a regular expression for m has
been recently introduced in [27] (see also [7]). This is given by the function mR:

mR(x) = m0

1 + (λx)2
, λ ∈ R, (30)

with

sR(x) = arcsinh(λx)

λ
, s−1

R (y) = sinh(λy)

λ
. (31)

The corresponding Jacobian J = 1/
√

1 + (λx)2 is nonzero for all x ∈ R and arbitrary values
of λ. Hence D(−1/4) ⊆ R and D(−1/4)

eff ⊆ R. The main aspects of these last results are
summarized in table 1. As a final remark, the mass (30) appeared in the construction of
the Wigner functions connected with a class of position-dependent oscillators [13]. Other
interesting mass functions are

mw(x) =
(

w + x2

1 + x2

)2

, mc(x) = cx2. (32)

They have already been studied in [22] and recently in e.g. [6]. Note that Jc(x = 0) = 0
and Jw �= 0 ∀ x ∈ R and w > 0. In the following sections we shall study specific forms
of the potentials V (x) and V∗(y), which represent oscillator-like interactions for a position-
dependent mass quantum system.

3. Two kinds of position-dependent mass oscillators

We are going to work with the eigenvalue equation (14) such that V
(a)

eff = V by either the
MDNT or the MINT cases described in the previous sections. Although our approach holds for
any well-defined potential V , we shall focus on the linear harmonic oscillator in two general
situations.

(i) Departing from a given interaction V (x) and a mass function m(x), we arrive at
the conventional linear harmonic oscillator problem in the y-representation. That is,

the new potential reads as V∗(y) = m0ω
2
0

2 y2, with ω0 being the natural frequency of
oscillation. Since V (x) and V∗(y) are isospectral they share the eigenvalues defined by
En = h̄ω0(n + 1/2), n = 0, 1, 2, . . .. We shall refer to these potentials as oscillators of
the first kind.

(ii) Departing from the linear harmonic oscillator interaction V (x) = m0ω
2
0

2 x2 and a mass
function m(x) we arrive at the eigenvalue equation connected with the new potential
V∗(y). Since V (x) and V∗(y) are isospectral, we solve the (conventional) Schrödinger
equation in the y-representation to construct the solutions of the initial oscillator-like,
position-dependent mass problem. We shall refer to these potentials as oscillators of the
second kind.

3.1. Oscillators of the first kind

Let us take V∗(y) = m0ω
2
0

2 y2 as the y-representation of the initial potential V (x). Then

D(a)
eff = R and all the mappings MDNT and MINT can be applied (see table 1). It is convenient

to introduce a dimensionless notation as follows:[
−1

2

d2

dy2
+

y2

2
− E

]
ϕ(y) = 0, y = y

(
h̄

m0ω0

)−1/2

≡ yα, E = E

h̄ω0
. (33)

7
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Figure 1. (a) The odd root-law potential (35) with n = 1, n = 2 and x0 = 0 besides the regular
one (ASh) defined in equation (38). The harmonic oscillator potential (Osc) is depicted as a
reference. (b) The square-logarithmic potential (Log) defined in equation (35) with x0 = 1 and
D(a0) = [−1, +∞). Potentials (Ash) and (n = 1) as well as the first three energy levels (E) are also
depicted. The vertical and horizontal axes are respectively in h̄ω0 and dimensionless units.

Then, the solutions read as

ϕn(y) = Hn(y) e−y2/2

√
2nπ1/2n!

, Hn(y) = (−1)n ey2/2 dn

dyn
e−y2/2, En = n +

1

2
. (34)

Next, we are going to solve the initial position-dependent mass problem in terms of these
results.

3.1.1. MDNT case. Let m(x; a) be the mass function with a ∈ A, that is m = m(n), n =
0, 1, 2, . . .. From equations (20) and (24) we know that the initial potential reads as

V(n)(x) = [V∗ ◦ s(n)](x) = m0ω
2
0

2λ2

{
(2n + 1)2(x0 + λx)

2
(2n+1) , n ∈ N, x ∈ R

ln2(x0 + λx), n = 0, x ∈ [t0, +∞).
(35)

A dimensional analysis shows that λ = λ0α, with λ0 being a constant (λ0 = 1 for simplicity).
The behavior of potential (35) for n = 1 and n = 2 is contrasted with the well-known
curve of the harmonic oscillator potential in figure 1(a); the case n = 0 is depicted in
figure 1(b). In both cases, as we have previously noted, the involved spectrum is given by
Ek = h̄ω0(k + 1/2), k = 0, 1, 2, . . ., while their eigenfunctions respectively read as

ψk(x) = Hk

[
(2n + 1)(x0 + αx)

1
(2n+1)

]
(x0 + αx)

n
(2n+1)

√
2kπ1/2k!

exp

[
− (2n + 1)2

2
(x0 + αx)

2
(2n+1)

]
, n ∈ N, (36)

and

ψk(x) = Hk[ln(x0 + αx)]√
(x0 + αx)2kπ1/2k!

e− 1
2 ln2(x0+αx), n = 0, (37)

with x running in the domains indicated in (35). Thus, the energy spectrum of a position-
dependent mass quantum system which is subject to either the action of a confining odd-
root-law potential V(n)(x) ∝ (αx)2/(2n+1), n ∈ N, or to a square-logarithmic interaction
V(0)(x) ∝ ln2(αx), is ruled by the quantization of the conventional harmonic oscillator energy
if the mass function is respectively taken as m(n) or m(0). It is worthwhile to mention that the
wave functions (36) and (37) inherit the singular point x = t0 of the corresponding masses.
Since the kinetic and potential energies go to zero as x → t0, it is natural that the probability
amplitude becomes important in the vicinity of t0. Yet, the wave functions are square integrable
and can be normalized consistently with equations (7) and (17).

8
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3.1.2. MINT case. Let mR(x) be the mass function with λ = α. Then, the spectrum of the
potential

V (x) = [V∗ ◦ s](x) = h̄ω0

2
arcsinh2(αx) (38)

is given by Ek = h̄ω0(k + 1/2), k = 0, 1, 2, . . ., and the involved eigenfunctions read as

ψk(x) =
[

m(x)

22kπ(k!)2m0

]1/4

Hk[arcsinh(αx)] e− 1
2 arcsinh2(αx), k = 0, 1, 2, . . . . (39)

In figure 1 the global behavior of potential (38) is shown in contrast with the curve of the
harmonic oscillator one.

As we can see, one is able to identify the kind of interaction V (x) which has to be applied
to a quantum system of position-dependent mass m(x) in order supply it with a specific,
well-known, spectrum Sp(H (a)). For instance, if Sp(H (a)) = {h̄ω0(n + 1/2)}+∞

n=0, we have
shown that the system has to be subject to potentials behaving as a confining odd-root-law,
ln2 or sinh2, whenever the mass function is respectively defined by (21), (26) or (30). A
deeper insight is necessary if one is interested in a position-dependent mass m(x), subject to
a particular interaction V (x), rather than in the recovery of a given spectrum. That is, what
sort of spectrum is expected by applying an oscillator-like interaction to a quantum system of
mass function m(x)? We will face this problem in the following section.

3.2. Oscillators of the second kind

In this section, we analyze the effects on the energy spectrum produced by a position
dependence of the mass. In other words, how different is the spectrum of a system of
mass m(x) from that of a particle of mass m0 when both of them are under the action of the
same potential V (x)? As before, we shall focus on the simplest case of the linear harmonic
oscillator interaction.

Let Vosc(x) = m0ω
2
0

2 x2 be the initial potential. Note that Dom(Vosc) = R requires
D(a) = R. However D(a0) ⊆ [t0, +∞), so that a must be different from a0 (see table 1).
The case a = a0 will be analyzed in section 3.2.3.

3.2.1. MDNT case. Let m(n)(x) be the mass function with n ∈ N and λ = α. The initial
potential Vosc(x) behaves as an even-power-law function in the y(n)-space (see figure 2):

V∗(y; n) = [
Vosc ◦ s−1

(n)

]
(y) = h̄ω0

2

[( αy

2n + 1

)2n+1
− x0

]2

, n ∈ N, (40)

where the label ‘(n)’ has been dropped from the y-coordinate for simplicity. Hereafter we
shall take x0 = 0. Note that V∗(y; n) → 0 as n → +∞ and V∗(y; n) → h̄ω0(αy)2/2 as
n → 0. Thus, the family of potentials (40) is delimited by the free particle and the harmonic
oscillator potentials (remember that n = 0 and n → +∞ are forbidden in equation (24)). Such
behavior is shown in figure 2.

Let us emphasize that although this kind of potential is not analytically solvable, they
have deserved special attention in pedagogical as well as in research papers over the years. For
instance, their WKB energy levels have been shown to depend on the power of the potential
[41] and the involved scale invariance has been studied in terms of the Lie method [42]. The
polarizability of a particle in a power-law potential due to the presence of a constant force and
the wave packet revivals in such potentials, on the other hand, have been exhaustively studied
in [43, 44] respectively.
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Figure 2. Three members of the family of power-law potentials (40). The conventional harmonic
oscillator potential (Osc) is recovered for the forbidden value n = 0 and the family goes to the free
particle case for n → +∞.

In general, the roots of V∗(y; n) = Vosc(y) define a region (−yc, yc) ⊂ D(an)
eff in which the

potential V∗ grows up more slowly than Vosc. The geometry of these last curves in (−yc, yc)

suggests that the spectrum of V∗ will be integrated by energy levels which are below the
corresponding oscillator energies. The behavior of the curves in the complementary region
D(an)

eff

∖
(−yc, yc) is such that the energy levels are expected to be above the oscillator ones.

To verify our statement, let us calculate the eigenvalues of V∗(y; n) by means of the energy
quantization condition of the WKB method:∫ +y0

−y0

√
2m0[E(n) − V (y; n)] dy = πh̄(k + 1/2), k = 0, 1, 2, . . . , (41)

with ±y0 = ±( 2n+1
α

)
(2E(n))1/(4n+2) being the classical (symmetric) turning points and E(n)

the energy connected with the potential V∗(y; n) for a given n ∈ N. The change of variable
y = y0z reduces the integral equation (41) to (compare with [41, 42]):

Ek(n) = h̄ω0

2

[
π

jn

(k + 1/2)

(2n + 1)

] 2n+1
n+1

, (42)

where the constant

jn =
∫ 1

−1

√
1 − z4n+2 dz =

√
π	
(

1
4n+2

)
2(n + 1)	

(
n+1

2n+1

) (43)

is such that jn → 2 as n → +∞ and j0 = π/2. Figure 3 shows the spectrum curves of
three members of the family (40) compared with the energy spectrum curve of the harmonic
oscillator. Note that the energy levels become closer to each other as the label n increases
(free particle case). That is, if n � 1 then Ek(n) ∝ [(k + 1/2)/n]2. On the other hand, for
the forbidden value n = 0 we have the oscillator spectrum Ek(0) = h̄ω0(k + 1/2), as was
expected. The corresponding set of eigenfunctions, in turn, can be numerically constructed or
analyzed by using improved versions of the WKB method like that discussed in [45].

Now, let us take one of the allowed values of n. The root of equation Ek(n) = Ek(0) is
given by

kc(n) = 1

2

⎧⎨⎩
[

(2n + 1)	
(

1
4n+2

)
√

π(n + 1)	
(

n+1
2n+1

)] 2n+1
n

− 1

⎫⎬⎭ . (44)

The ceiling function �kc� of kc(n) defines a subset of Sp(V∗(y; n)) = {Ek(n)}+∞
k=0 for which

Ek(n) < Ek(0) ∀ k < �kc�. The larger the value of n, the bigger the set of eigenvalues Ek(n)

10
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Figure 3. Left: the spectrum curves Ek(n) of the power-law potential (40) for n = 1, 2, 3 and the
spectrum curve of the harmonic oscillator (Osc); all of them are depicted in h̄ω0 units as a function
of k. Note the points in which Ek(n) = Ek(0). Right: details of the first four energy levels.

delimited by Ek(0). The complementary set is then such that Ek(n) > Ek(0) ∀ k � �kc�;
details are shown in figure 3.

In conclusion, the oscillator of the second kind defined by the pair (Vosc,m(n)), n ∈ N,
shares its spectrum with a particle of mass m0 subject to an even-power-law potential of the
form V∗(y(n); n) ∝ [y(n)/(2n + 1)]4n+2. When contrasted with a conventional oscillator of
mass m0, the energy spectrum of the pair (Vosc,m(n)) is a distorted version of the oscillator
one. The shape and amount of the distortion are respectively dictated by equation (42) and
kc(n), as the latter was defined in (44). That is, the distortion is stronger for larger values of
|�kc� − k| in equation (42).

3.2.2. MINT case. Let mR(x) be the mass function with λ = α. The potential in the
y-representation reads as

V∗(y) = [
Vosc ◦ s−1

R

]
(y) = h̄ω0

2
sinh2(αy). (45)

Here, the (dimensionless) Schrödinger equation to solve is[
− d2

dy2
+ sinh2y

]
ϕ = 2Eϕ. (46)

As in the previous case, the energy quantization condition (41) gives an accurate approximation
to the eigenvalues E of the energy. With the classical turning points ±y0 = ±arcsinh(

√
2E)/α,

one arrives at the following transcendental equation:
√

2EFE

(
iarcsinh

√
2E

∣∣∣∣− 1

2E

)
= i

π

2
(k + 1/2), (47)

where

FE(ϕ | m) =
∫ ϕ

0
(1 − m sin2 θ)1/2 dθ

is the elliptic integral of the second kind (see, e.g. [46]). The roots Ek of (47) can be evaluated
numerically by using conventional algorithms. In table 2 we show some of the first values of
Ek compared with those obtained from a direct, numerical integration of the Schrödinger
equation (46). The corresponding probability densities |ϕ∗(y)|2 are plotted in figure 4,
contrasted with their partners |ψ(x)|2 in the x-representation.

In this case the geometry of the curves V∗(y) and Vosc(y) is in correspondence with the
fact that all the energy eigenvalues of V∗ are above the related energy levels of Vosc. Indeed,

11
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Figure 4. Left: the potential sinh2(y) and the probability densities of its three first wavefunctions
together with the corresponding energy levels. The oscillator potential curve (dashed) is included
as a reference. Right: probability densities of the first three wavefunctions of a second kind, a
position-dependent mass oscillator which shares its spectrum with the sinh2(y) potential. In both
cases, the vertical and horizontal axes are respectively in h̄ω0 and dimensionless units.

Table 2. The first ten energy levels of the potential sinh2(y) calculated numerically from the WKB
transcendental equation (47) and directly from the Schrödinger equation (46).

Ek in h̄w0 units

k WKB Schrödinger

0 0.556 44 0.605 71
1 1.944 82 1.983 68
2 3.628 13 3.662 50
3 5.561 79 5.593 65
4 7.719 41 7.749 48
5 10.082 92 10.111 65
6 12.638 90 12.666 57
7 15.376 83 15.403 65
8 18.288 21 18.314 31
9 21.365 92 21.391 41

around the origin one has V∗ � Vosc, so that E0 � 0.5h̄ω0, as expected (see table 2). For
an arbitrary excited level Ek , the distortion is as strong as the speed of the growing up of
V∗ − Vosc. In conclusion, the oscillator of the second kind (Vosc,mR) shares its spectrum with
a particle of mass m0 subject to the sinh2 potential (see figure 4). The spectrum, in turn, is a
strongly distorted version of the conventional oscillator’s one.

3.2.3. The squeezed oscillator. Let us consider the potential

Vsq(x) = h̄ω0

8

{[
1

x0 + αx
− (x0 + αx)

]2

+ 2(1 −
√

2)

}
, x � t0, (48)

with α defined in (33), x0 a dimensionless constant and Dom(Vsq) = [t0, +∞). This potential is
often referred to as a ‘singular oscillator’ because of its singularity at x = t0. The conventional
expression Vsq(x) = m0ω

2
0

(
x2

2 + g2

x2

)
, with g being in units of the square of distance and shifted

by −√
2h̄ω0/4, is recovered from (48) with x0 + αx = z and α2g = √

2/4. Here, we prefer to
call it the sqeezed oscillator because its domain of definition is the result of a lhs ‘squeezing’

12
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Figure 5. The squeezed oscillator (48) and its first three probability densities. The vertical and
horizontal axes are in h̄ω0 and dimensionless units respectively.

of R in terms of s−1, as was established in the previous sections. If the mass function m(x) is
a constant m0, the involved (dimensionless) Schrödinger equation

− d2

dz2
ϕ +

1

4

[(
1

z
− z

)2

− 2(
√

2 − 1)

]
ϕ = 2Eϕ, z = x0 + αx, (49)

can be solved in terms of confluent hypergeometric functions by means of the appropriate
transformation (see, e.g. [20]). Indeed, the mapping ϕ → z� e−z2/4u(z), z �→ √

2χ , leads to
the following Kummer equation:

χ
d2

dχ2
u +

(
2 +

√
2

2
− χ

)
d

dχ
u −

(
1

2
− E

)
u = 0 (50)

with � = (1 +
√

2)/2. Thereby, the physical solutions for En = h̄ω0(n+ 1/2), n = 0, 1, 2, . . .,
read as

ϕn(z) = Cnz
1+

√
2

2 e− z2

4 1F1

(
−n, 1 +

1√
2
,
z2

2

)
=
(

n!

21/
√

2	(n + 1 + 1/
√

2)

)1/2

z
1+

√
2

2 e− z2

4 L(1/
√

2)
n (z2/2) (51)

with L(α)
n (x) being the generalized Laguerre polynomials [46] so that for a constant-mass

quantum system, the one-dimensional potential (48) shares its spectrum with the conventional
linear harmonic oscillator. Moreover, it is well known that formulae (51) can also be
algebraically obtained in terms of the su(1, 1) Lie algebra (see, e.g. [30], pp 217). The
squeezed oscillator is shown in figure 5, together with some of the corresponding probability
densities.

If m(x) is not a constant then the energy spectrum of the quantum system is modified, as
we have previously verified. According to table 1, any of the masses (21), (26) or (30) allows
the mapping to the y-space. First let us consider the case m = m(0). The potential (48) is
mapped to the following one:

V∗(y(0)) = [
Vsq ◦ s−1

(0)

]
(y(0)) = h̄ω0

2

[
sinh2(αy(0)) +

1 − √
2

2

]
(52)

which, up to an additive constant, is the same as the potential reported in equation (45).
Thereby, we have shown that a quantum system endowed with mass m(0)(x) and acted on by
the oscillator-like potential (48) shares its spectrum with a particle of mass m0 which is under
the action of the potential sinh2(y(0)). In comparison with a constant mass quantum oscillator,
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we realize that the presence of m(0)(x) distorts the ground-energy level of the oscillator-like
system from 0.5 to ≈0.6 energy units (h̄ω0), the second one from 1.5 to ≈1.9, and so on. The
higher the level of excitation of the system the stronger the distortion of the spectrum.

Note that the system studied in section 3.2.2 behaves in a similar manner, so there exists
a clear relationship between position-dependent mass systems: different masses combined
with appropriate interactions give rise to the same spectrum. In this case, the oscillators of the
second kind defined by the pairs (Vosc,mR) and (Vsq,m(0)) are isospectral (see table 2). On the
other hand, we have another pair of oscillators of the second kind (Vsq,m(n)) and (Vsq,mR),
which are respectively isospectral with the constant-mass potentials

V∗(y(n)) = h̄ω0

8

⎧⎨⎩
[(

2n + 1

αy(n)

)2n+1

−
( αy(n)

2n + 1

)2n+1
]2

+ 2(1 −
√

2)

⎫⎬⎭ , n ∈ N, (53)

and

V∗(y) = h̄ω0

8

{[
1

x0 + sinh αy
− (x0 + sinh αy)

]2

+ 2(1 −
√

2)

}
. (54)

Each one of these last potentials shows a spectrum which is a distorted version of
Sp(Vsq) = Sp(Vosc). In summary, given an interaction represented by V (x), the spectrum
of a position-dependent mass quantum system is a distorted version of the spectrum of a
particle of mass m0 subject to the same interaction. As we have realized, the degree of
distortion depends directly on the explicit position dependence of the involved mass.

4. Factorization and coherent states

Once we have constructed the solvable position-dependent mass Hamiltonians Ha , one can
look for the appropriate factorization operators. The presence of m(x) in Ha makes necessary
a refinement of the factorization (see, e.g. [20, 47]). As usual, the factorization operators
intertwine the initial Hamiltonian with a set of new exactly solvable energy-like operators H̃a

[15, 16]. However, in general they do not act as ladder operators on the eigenfunctions of either
Ha or H̃a . In the case of position-dependent mass oscillators of the first kind, the factorization
operators act in a ladder form if their commutator is the appropriate constant. Then, as we are
going to show, one is able to construct a set of position-dependent mass coherent states.

4.1. The position-dependent mass factorization

Let A and B be the following operators:

A = − i√
2
maPmb + β, B = i√

2
mbPma + β, A† = B, (55)

with β being a function of the position operator X. We want to work with A and B as the
factorization operators of Ha . In this regard, it is important to stress that most of the literature
pays attention to a specific ordering of m and P. Namely, it is usual to take a = 0 and b = −1/2
so that the kinetic part of Ha reads as 1

2P 1
m

P , with the corresponding simplification of A and
B (see, e.g. [21, 22, 28]). Here, we shall use the operators (55) with no a priori assumption on
the ordering of m and P. In this way, the results already reported will be included as particular
cases.

If A and B factorize the Hamiltonian (1) in a refined way [47], then one has

Ha = AB + ε, (56)
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and β fulfills a Riccati equation in the position representation:

V − ε = h̄√
2m

[
2

(
a +

1

4

)(
m′

m

)
β − β ′

]
+ β2, (57)

where ε is a constant (in energy units) to be fixed. For arbitrary m and β the product between
the factorization operators obeys the commutation rule:

[A,B] = − h̄2

m3

(
a +

1

4

)[
mm′′ − 3(m′)2

2

]
− 2h̄√

2m
β ′. (58)

Therefore, we have a new operator H̃a , defined as follows:

H̃a ≡ BA + ε = Ka + Ṽ , Ṽ := V − [A,B], (59)

which is intertwined with Ha by means of the factorization operators:

H̃aB = BHa, HaA = AH̃a. (60)

The relevance of these last relationships is clear by noting that, if ψ is an eigenfunction of Ha

with eigenvalue E (see equation (5)), then ψ̃ ∝ Bψ �= 0 solves the new eigenvalue equation

H̃aψ̃(x) = Eψ̃(x). (61)

Moreover, it is easy to verify that a normalized wavefunction ψ leads to |ψ̃ |2 ∝ E − ε.
Then, the new set {ψ̃ = Bψ/(E − ε)1/2|E �= ε} consists of normalized eigenfunctions of H̃a

belonging to the eigenvalues {E} = Sp(Ha). Now, let ψ̃ε be a function which is orthogonal
to the set {ψ̃}, i.e., (ψ̃, ψ̃ε) ∝ (ψ,Aψ̃ε) = 0. Since ψ �= 0 we have Aψ̃ε = 0 and necessarily
H̃aψ̃ε = εψ̃ε . The involved solution reads as

ψ̃ε = Cεm
a+1/2 exp

[√
2

h̄

∫ x

m1/2β dr

]
(62)

with Cε being a constant of integration. If (ψ̃ε, ψ̃ε) < ∞, then Sp(H̃a) = Sp(Ha) ∪ {ε}.
The previous derivations considered ε /∈ Sp(Ha). To include the case ε ∈ Sp(Ha) let us

assume that the solution of BψM = 0, given by

ψM = CMCεm
1/2(ψ̃ε)

−1, (63)

is a square-integrable function. In this way ψM is the wavefunction of Ha belonging to the
eigenvalue E = ε. As a consequence, there is no element in {ψ̃} constructed from ψM

via relationships (60). The corresponding function ψ̃M must be obtained as a solution of
BAψ̃M = 0 (see, equations (59) and (61)). There are two possible cases, as follows:

(1) If Aψ̃M = 0, then ψ̃M has the same form as the function defined in (62). However,
if ψM ∈ L2(D(a)), from equation (63) one notes that ψ̃M ∝ m1/2/ψM is not square
integrable.

(2) If Aψ̃M �= 0 and B(Aψ̃M) = 0, one can take Aψ̃M = ψM such that B(ψM) = 0. Then,
because ψ and ψM are orthogonal, we have (ψ̃, ψ̃M) = (ψ,Aψ̃M) = (ψ,ψM) = 0.
Thus, ψ̃ and ψ̃M are orthogonal and Sp(H̃a) = Sp(Ha), with ε ∈ Sp(Ha).

At this stage, it is important to stress that Sp(Ha) and {ψ} can be obtained by means
of the transformations introduced in section 2. Thereby, we get a wide family of isospectral
operators if, for instance, H(an) is the MDNT-Hamiltonian defined in (28). That is, we have

Sp
(
H̃an

) = Sp
(
Han

)
� Sp(H (an)) = Sp(H̃ (an)), (64)
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where H̃ (an) is the Hamiltonian intertwined with H(an) in the y(n)-representation. The same
can be said about the MINT-Hamiltonian H defined in (29). In this context, it will be profitable
to decompose the commutator (58) in the MDNT and MINT cases:

[A,B] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−
[

h̄

m3/2

(
a +

1

4

)
m′
]2

−
√

2h̄2

m
β ′ (MDNT)

−
√

2h̄2

m
β ′ (MINT).

(65)

4.2. Position-dependent mass ladder operators

Let us consider the Hamiltonian of an oscillator of the first kind Ha . In advance we know that
Sp(Ha) = {En = h̄ω0(n + 1/2)}+∞

n=0, whether we deal with the MDNT or the MINT case (see
section 3). To get the simplest form for the corresponding annihilation and creation operators,
let us take [A,B] = −h̄ω0. Then we have H̃a = Ha + h̄ω0. That is, H̃a differs from Ha only
in the zero of the potential. This physical equivalence and the intertwining relationships (60)
make clear the roles played by the factorization operators:

A(Ha + h̄ω0) = HaA, B(Ha − h̄ω0) = HaB. (66)

Therefore, Aψn ∝ ψn+1 and Bψn ∝ ψn−1 if Haψn = Enψn. Now, the substitution of
[A,B] = −h̄ω0 into (58) leads to the following β-function:

β = ω0√
2

∫ x

m1/2 dr − h̄√
2

(
a +

1

4

)(
m′

m3/2

)
+ β0. (67)

Here, β0 is an integration constant which will be omitted in the following. The identification
ε = h̄ω0/2, after introducing (67) in the Riccati equation (57), allows us to write the potential
V in terms of the β-function:

V = β2 +
2h̄√
2m3

(
a +

1

4

){
m′β +

h̄

2
√

2m3

[
mm′′ − 3

2
(m′)2

]}
. (68)

The straightforward calculation shows that this last expression is reduced in both the MDNT
and the MINT cases to the same simple form

V = ω2
0

2

[∫ x

m1/2 dr

]2

. (69)

Note that this expression for the potential is consistent with our transformations in sections 2

and 3. Indeed, since V∗(y) = m0ω
2
0

2 y2 has been given as the initial potential, its x-representation
reads as

V (x) = [V∗ ◦ s](x) = V∗(s(x)) = m0ω
2
0

2
(s(x))2 (70)

with y = s(x) given in (13). In summary, we have shown that A and B, as they are defined
in (55)–(57), are nothing but creation and annihilation operators if their commutator (58) is
constrained to be a constant equal to the separation between the energy levels of Ha . The
same condition allows us to identify a quadratic potential V , expressed in terms of the mass
function, which is consistent with the transformations defined in the previous sections.
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4.3. Position-dependent mass coherent states

To take full advantage of the results derived in the previous sections, let us rewrite the
factorization operators as follows (compare with [21, 22, 28]):

A = − h̄√
2m

[
d

dx
− (ln m)′

4

]
+

ω0√
2

∫ x

m1/2 dr, (71)

B = h̄√
2m

[
d

dx
− (ln m)′

4

]
+

ω0√
2

∫ x

m1/2 dr, (72)

where we have used (55) and (67). The operator B in the y-space is then given by

B∗ = h̄√
2m0

d

dy
+

(
ω2

0m0

2

)1/2

y − h̄√
32m0

(
d ln m∗

dy

)
(73)

and a similar expression for A∗, obtained from (73) by changing the sign of the first and the
third terms. Finally, in the dimensionless notation of equation (33) we get

B∗ = d

dy
+ y −

(
d

dy
ln m1/4

∗

)
, B∗ =

(
h̄ω0

2

)1/2

B∗ (74)

and A∗ = A∗
√

h̄ω0/2. Then, from (55) we have

Ha∗ = (2/h̄ω0)Ha∗ = A∗B∗ + 1, [A∗, B∗] = −2. (75)

The action of Ha∗, A∗ and B∗ on ψ in the dimensionless y-representation is as follows:

Ha∗ψ∗ = J 1/2
∗ (−ϕ̈ + y2ϕ), A∗ψ∗ = J 1/2

∗ a+ϕ∗, B∗ψ∗ = J 1/2
∗ a−ϕ∗. (76)

The Jacobian J is defined in equation (16) and a− (a+) is the conventional annihilation
(creation) operator of the linear oscillator in the y-representation.

a− := d

dy
+ y, (a+)

† = a−, [a−, a+] = 2, a+a− = 2N (77)

with N being the Fock’s number operator. Hereafter, we shall omit the ‘*-notation’.
In order to construct a set of coherent states as eigenfunctions of B, we first take an

arbitrary linear combination � of the wavefunctions ψn associated with Ha:

� =
∞∑

k=0

ckψk. (78)

The action of B on this last function reads as

B� = J 1/2
∞∑

k=0

ck

√
2kϕk−1. (79)

We look for the functions � fulfilling B� = z�, z ∈ C. The straightforward calculation
leads to a recurrence relation which is satisfied by the coefficients ck . The root is found to
be ck = zkc0/

√
k!2k . As usual, the coefficient c0 is fixed by the normalization of � and we

finally arrive at the familiar expression:

�z = e− |z|2
4

∞∑
k=0

zk

√
2kk!

ψk = J
1
2 e− |z|2

4 e
za+

2 ϕ0 ≡ J
1
2 e− |z|2

4 e
za+

2 e− za−
2 ϕ0 = J

1
2 D(z)ϕ0, (80)

where z stands for the complex conjugation of z and we have used the Baker–Campbell–
Hausdorff formula eAeB = exp

(
A + B + 1

2 [A,B]
)
, with [A, [A,B]] = [B, [A,B]] = 0, to

recover the displacement operator

D(z) := e
za+−za−

2 = eza+/2 e−za−/2 e−|z|2/4. (81)
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Thereby, since θz(y) := D(z)ϕ0(y) is a conventional constant mass coherent state in the
y-space we conclude that its partner in the x-coordinates �z = J 1/2θz is a position-dependent
mass coherent state, defined in terms of the annihilation operator B. Explicitly, �z(x) is given
by

�z(x) =
(

m(x) e−|z|2

m0

)1/4 ∞∑
k=0

zk

√
2kk!

ϕk(s(x)). (82)

This last result is the general expression for the coherent states of any of the oscillators of the
first kind introduced in section 3.1. In this context, let one of these oscillators be in the state
�z. The probability of getting En = 2n + 1 as the result of a measurement of the energy is
ruled by the Poisson distribution:

Pn(�z) ≡ |(ψn,�z)|2 = |z|2n

2nn!
e−|z|2/2. (83)

The mean value 〈Ha〉z is then given by

〈Ha〉z ≡ (�z, Ha�z) =
∞∑

k=0

Pk(�z)Ek = |z|2 + 1, (84)

where we have used equation (75). In the same manner we find
〈
H2

a

〉
z

= |z|4 + 4|z|2 + 1, so

that �Ha = |z|√2. Hence, for very large |z| one gets �Ha � 〈Ha〉z and the relative value of
the energy of the state �z is well defined, as usual for the Glauber states. It is also simple to
verify that the product of the root-mean-square deviations �P and �Y is minimized. Notice
that Y = s(X), with s being the transformation defined in (9). Thereby, the states �z of
equation (82) minimize the uncertainty relation between position and momentum in a relaxed
form. In conclusion, the z-parameterized functions (82) are the coherent states belonging to a
wide class of position-dependent mass oscillators of the first kind.

5. Concluding remarks

We have studied the problem of solving the Schrödinger equation for an arbitrary position-
dependent mass system. Our approach is useful to face two general physical situations. In
the first one we look for the interaction which must be applied to a mass m(x) to supply
it with a particular spectrum of energies. The second physical situation corresponds to
the case in which one is interested in a given position-dependent mass m(x), subject to a
particular interaction V (x) rather than in the recovery of a specific spectrum. For arbitrary
orderings of m(x) and P in the Hamiltonian, diverse general expressions for m(x) were derived
as a consequence of mapping the original Schrödinger equation to a conventional constant
mass one. It was also found that the transformation is rather simple for the very special
ordering m−1/4Pm−1/2Pm−1/4 in the kinetic part of the Hamiltonian. In contradistinction with
[21, 22, 28], we showed that a position-dependent mass Hamiltonian can be factorized as the
product of two mutually adjoint operators with no a priori assumptions on the ordering of m
and P.

In particular, two kinds of position-dependent mass oscillators were analyzed. The first
one is defined to be isospectral with the quantum oscillator of mass m0, no matter what
the explicit form of m(x) and V (x) is. The oscillators of the second kind exhibit spectra
different from the equidistant energies h̄ω0(n + 1/2) and correspond to a particular mass m(x)

subjected to the harmonic oscillator potential. Results include the singular oscillator as well
as confining odd-root-law, ln2 and sinh2-like interactions. The special case of a particle of
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mass m0 in a confining even-power-law potential was found to be isospectral to a system
of mass m(x) ∝ x−4n/(2n+1), subject to the action of the harmonic oscillator potential. The
factorization operators were then selected to work as ladders in the space of the position-
dependent mass oscillators. Finally, the coherent states corresponding to oscillators of the
first kind were explicitly constructed as eigenvectors of the annihilation operator. These new
CS have the same analytical form as the Glauber states and minimize a relaxed version of the
position–momentum uncertainty principle.

Of special interest, the singular oscillator Vsq, defined in equation (48) and referred to in
section 3.2.3 as the squeezed oscillator, exhibits CS connected with the su(1, 1) Lie algebra if
the mass is a constant [30]. Particular cases of the mass function have been shown to preserve
the su(1, 1) spectrum structure of Vsq [28]. The same is true for any of the masses derived
in this paper. Thereby, it is sound to construct position-dependent mass su(1, 1)-like CS.
Following [30], such a result could be applied to get a better understanding of the physics of N
interacting particles (work in this direction will be published elsewhere [48]). Other physically
interesting systems can be analyzed in the corresponding manner once the dynamical algebra
is given. Special attention must be drawn to the Susy nonlinear algebras engaged with infinite
point spectra. If the energy levels can be obtained by a function of its index En = E(n), then
one can distinguish between natural and linear algebras of the Susy system. To each one of
these algebras, there exists a companion set of CS [32]. Then, besides the systems discussed
above, it would be also interesting to analyze the position-dependent mass CS belonging to
higher order Susy partners of potentials like the Pöschl–Teller one [49, 50] (see also [36]).
Results on this matter are in progress.
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Note added in proof. After this paper was accepted for publication we were advised of the work by G X Ju,
C Y Cai and Z Z Ren in arXiv:0707.3259 (hereafter ‘Ju paper’). There, the authors discuss the factorization of the
Hamiltonian Ha for a specific value of a. Namely, they necessarily arrive at the constraint a = −1/4 (β = −1/2
in the notation of the Ju paper). In this sense, the approach of Ju et al adheres to the one used in e.g. [21, 22, 28]
and their results are recoverable from our approach concerning the oscillators of the first kind. Nevertheless, the Ju
paper reports on the study of CS in connection with position-dependent mass oscillators. Ju and co-workers calculate
the root-mean-square (rms) deviations for a pair of functions μ(x) and π̂(x)—see equations (26)–(28) of the Ju
paper—the product of which can be put in correspondence with our relaxed version of the uncertainty principle if the
identifications y ∝ μ(x) and P∗ ∝ π̂(x) are feasible.
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